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Let Xt, X 2 , . . .  be i.i.d, random elements (the states of the particles 1, 2, . . . ) .  
Let f be an •d-valued, measurable function (an observable) and let B c R d be 
a convex Borel set. Denote Sn = f ( X 0  + f ( X 2 ) + ' ' "  +f(Xn). Using large-devi- 
ation theory, it may be shown that, under certain regularity conditions, there 
exists a point vB (the dominating point of B) so that, given S, /n  ~ B, actually 
S,/n--> v~ in probability as n ~ 0o. Having this conditional weak law of large 
numbers as our starting point, we consider physical systems of independent 
particles, especially the ideal gas. Given an observed energy level, we derive 
convergence results for empirical means, empirical distributions, and micro- 
canonical distributions. Results are obtained for a closed system with a fixed 
number of particles as well as for an open particle system in the space (a Poisson 
random field). Our approach is elementary in the sense that we need not refer 
to the abstract "level II" theory of large deviations. However, the treatment is 
not restricted to the so-called discrete ideal gas, but we consider the continuous 
ideal gas. 

1. I N T R O D U C T I O N  

T h e  i dea l  gas  (i.e., a sy s t em o f  a l a rge  n u m b e r  o f  pa r t i c l e s  w i t h  no  

i n t e r a c t i o n  ene rgy )  is a b a s i c  e x a m p l e  o f  t h e r m o d y n a m i c a l  sys tems.  Le t  

A c B~ 3 be  a g i v e n  c o n t a i n e r  h a v i n g  the  v o l u m e  ]A] = V. S u p p o s e  tha t  we  can  

o b s e r v e  the  e n e r g y  d e n s i t y  u ( =  the  i n t e r n a l  e n e r g y / V )  a n d  the  pa r t i c l e  

d e n s i t y  ~, o f  t he  idea l  gas  c l o s e d  in to  A. Le t  A;  c A be  a sma l l  ( c o m p a r e d  

to  A)  s u b c o n t a i n e r .  A c c o r d i n g  to  the  c lass ica l  resul t s  o f  B o l t z m a n n  a n d  

G i b b s ,  t he  n u m b e r  o f  pa r t i c l e s  in A1 is P o i s s o n  d i s t r i b u t e d  wi th  t he  p a r a m e t e r  

~V1 a n d  the  m o m e n t s  o f  t he  pa r t i c l e s  a re  i n d e p e n d e n t  a n d  i d e n t i c a l l y  

d i s t r i b u t e d  (i . i .d.) e a c h  h a v i n g  a c e n t r a l i z e d  n o r m a l  d i s t r i b u t i o n  wi th  t he  
v a r i a n c e  o - 2 = 2 m u / 3 u ,  w h e r e  m d e n o t e s  t he  mass .  T h e  t e x t b o o k s  o f  

t h e r m o d y n a m i c s  u s u a l l y  d e r i v e  th is  a n d  c o r r e s p o n d i n g  resu l t s  by  s i m p l e  
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combinatorial  arguments using the Stirling approximation for the arising 
factorials n! (see, e.g., Martin-LSf, 1979). 

In the area of  probabili ty theory there has been for about 20 years a 
growing interest in the probabilistic foundations of  thermodynamics.  It has 
turned out that the basic laws of thermodynamics are manifestations of  the 
so-called principle of  large deviations. By now there exists an abundance 
of  articles on this subject. An important early reference is the paper  by 
Lanford (1973). The more recent development of  the theory is extensively 
treated in the monograph  by Ellis (1985). 

As the starting point of  this approach one can take the following 
scheme: Let Xa, X ~ , . . .  be a sequence of i.i.d, random elements interpreted 
as the states of  the particles. Considering an observable f (i.e., an Rd-valued 
measurable function), denote ( i = f ( X i )  and let Sn=~l'~2"~-*'*'~-~n. 
Denote /z  = ~ .  According to the law of  large numbers,  S,,/n --) tz a.s. (and 
thus in probability) as n --) oc. Let now B c R a be a convex Borel set so that 
tz ~/3. Then, under certain regularity conditions, there exists a point vB ~ aB 
(called the dominating point of  B) so that, given the condition S , / n  ~ B, 
actually 

S . /n ->vs  in probabili ty as n-->~ (1.1) 

Ellis does not formulate explicitly a conditional law of large numbers of  
this type in a general form, but derives results for the special case called 
the discrete ideal gas. The proofs are based on an abstract "level I I "  theory 
of large deviations concerning the empirical distributions of  i.i.d, random 
variables [see Chapter  I I I  in Ellis (1985)]. 

In the present article we will formulate the above law of large numbers 
in a general form. As a special case we treat the (continuous) ideal gas and 
it turns out that we do not need to refer to the level II  theory. Moreover,  
by considering a unit box in a Poisson random field having inside it N 
particles with the states Xa, 3(2, �9 �9 �9 XN and taking the state of  the box as 
X = (X1, X2, �9 �9 �9 XN; N) ,  we can easily use our basic result to obtain the 
asymptotic equivalence of the microcanonical distribution and the grand 
canonical distribution (see also Aizenman et al., 1978, and Dobrushin and 
Tirozzi, 1977). 

2. M I C R O C A N O N I C A L ,  CANONICAL,  
AND E M P I R I C A L  DIS TR IB UTIONS  

Let (E, ~) be a measurable space. Let X1, X2 . . . .  be a sequence of 
i.i.d. E-valued random elements having the common law ~(X1)  = PX~ -1 = P. 
We interpret Xa, X 2 , . . .  as the states of the particles 1, 2 , . . . .  
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Let f :  E ~ R a be a measurable mapping to be called an observable. We 
assume that f splits into two observables f =  (g, u), where g : E ~ ~d, and 
u:E  ~ R  d: with d l +  d2 = d. We think that information about the states 
X~, X2 . . . .  may be obtained through observing the sample mean 

Uo/n = E u ( X 3 / n  
i=1  

To be more precise, let C be a (nonempty) convex Borel subset of  R a~. 
When considering the implications of  an observation we shall be concerned 
with the conditional probabilities 

P . , c : = P ( ' l U . / n e C )  

the microcanonical probabilities. The induced conditional to be called 
distributions 

P..c (dx):= Po, cX~l(dx) = P(X, ~ dxl Uo/n ~ C) 

are called the microcanonical distributions (of the states). 
Let ~ a2 be fixed. Suppose that the Laplace transform Z ( / 3 ) =  

Ee ~'u(x~)~ is finite. Then the probabili ty distribution 

Pt3(dx) = Z ( / 3 ) - ' e  <~'u(x)~ P(dx) (2.1) 

is called a canonical distribution. 
We shall also be concerned with empirical distributions: Let ex denote 

the unit mass at x c E. Then the (random) probabili ty measure 

L(dx)=n -1 2 ~x,(dx) 
i=1  

is called the empirical dstribution of the states X~, X2, .  �9 �9 X, .  Our main 
result (Theorem 1) states that under certain regularity conditions the 
empirical distributions converge, as n-~ oo in the sense of  exponential  
convergence with respect to the microcanonical  probabilities (to be 
explained below) to a certain canonical distribution. As an easy corollary 
we obtain convergence of  the microcanonical  distributions to the same 
canonical distribution. 

Throughout  Sections 3-5 we consider the limiting behavior of empirical 
and microcanonical  distributions, and the spatial distributions do not play 
any role here. Finally, in Section 6 we discuss the more general situation 
where the number  of  particles in a given container is also allowed to be a 
random variable. This leads us to consider the convergence of the micro- 
canonical distribution of  the random collection of particles in a container 
toward a limiting distribution to be called the grand canonical distribution. 
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3. P R E L I M I N A R I E S  F R O M  L A R G E - D E V I A T I O N  T H E O R Y  

In order to formulate our hypotheses and results in precise terms, we 
have to introduce some terminology and preliminary results from the large- 
deviation theory concerning the sums of i.i.d. Rd-valued random variables. 

Let C1, ~=2,... be a sequence of i.i.d. Rd-valued random variables with 
the common law 5g(~)=p ,  and let i~=~_~l=Ssp(ds).  Denote by 4~ the 
Laplace transform ~b(t) = S e<t's> p(ds). We call c(t) = log ~b(t) the free energy 
function. Let 

= { t c R d ;  q~(t) <oO} = {t S Rd; C(t) < ~ }  

and let O ~ = co(supp p) be the closed convex hull of  the support  of  p. Let 
ri(ow) denote the relative interior of  5e. 

Suppose that the domain @ is nonempty and open (or, more generally, 
that the free energy function c is essentially smooth). Then re(t)= 7c( t )  
defines a C ~ - h o m e o m o r p h i s m  m: @-->ri(ow) (see, e.g., Rockafeltar, 1970, 
Theorem 26.5). 

The conjugate distributions p,, t ~ @, of p are defined by 

p,(ds) = e (t's)-c(t) p(ds) 

and we have 

( 
re(t) = fl:,~, = J spt(ds)  

[Here po=p and re(O)=/~.] 
The convex conjugate function c* of c is defined by the formula 

c * ( v ) = s u ~ { ( t , v ) - c ( t ) }  for vCR d 
t E ~  

= ( m - l ( v ) ,  v ) - c ( m - l ( v ) )  when v c r i ( 5  ~) 

(see Rockafellar, 1970, Section 12). We call it the entropy function. 
Consider a Borel set B c R d and denote c*(B)= inf~B c*(v). Suppose 

that @ is open. Let B be convex and such that ri(5 ~ c~ B ~ # • and /~ ~/~. 
Then there exists a unique point vB ~/3, the dominating point of B, so that 
c*(B) = c*(vB) and actually vB ~ OB c~ri(9 ~ (see, e.g., Ney, 1983). Denote 
tB = m- ] (  vB). 

Let (IV,) be a sequence of ~d-valued random variables and let (P , )  
be a sequence of probabili ty measures. Following Ellis (1985), we say that 
the random variables W, converge to a random variable W~o exponentially 
with respect to the probabilities P,  if, for each e > 0, there exists a constant 
/~ > 0 so that 

P,(I W, - Wool > e) < e -4" eventually 
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This is denoted by W, ~ p  Wo~ [wrt (P, ) ] .  Note that, if, additionally 
W1, W2, . . .  are uniformly bounded,  then also 

n : . [W. -  Wool-->0 as n-->~ (3.1) 

Let S. = ~:1+ ~2 + " "  + ~.. Consider the distribution of the mean S. /n  
given that S . /n  ~ B. Under  the assumptions mentioned above, i.e., (i) ~ is 
open and (ii) B is a convex Borel set so that ri(5 e) c~ B ~ # O and /z ~/~, it 
was shown in Nummel in  (1987) that 

S. /  n ~ ~ 

with respect to the conditional probabilities P . , ,  = P ( - I S . / n  ~ B). This result 
will be used in the sequel and we call it the conditional weak law of large 
numbers. [A more general conditional law of  large numbers of  level I I  type 
can be found in Csiszar (1984).] 

4. C O N V E R G E N C E  TO T H E  C A N O N I C A L  D I S T R I B U T I O N  

In this section we shall formulate and prove the convergence results 
mentioned in Section 2. 

We consider the scheme introduced at the beginning of Section 2. Thus, 
X1, X2, . . .  denote states of  particles and f =  (g, u) is an Pa-valued observ- 
able. For any v E R a, vl and v2 refer to the splitting v = (vl ,  v2) corresponding 
to the decomposi t ion R ~ = ~a, • R~2. We apply the results of  Section 3 to 
the random variables ~i =f(Xi)  and so, e.g., c(t) = log B=e <'f(x,)>, t ~ ~a. On 
the other hand, in the case of  the random variables u(X~) we use the 
subscript u, so, e.g., c,(/3) = log ~e <~'"(x0>,/3 E ~ a2. 

Suppose that ~ ,  is open. Suppose further that g is bounded. Then the 
domain of  c is clearly the open set ~ = ~ '  x ~ , .  

Let a c r i ( ~ ) .  Denote/3 = m ~ l ( a ) ' ( ~  R~2), t~ = (0,/3) ( c  ~a) ,  and v~ = 
m(t~). Note that the following "contract ion principle" holds: 

c*(v~)= inf c*(v) (4.1) 
U:U2=C~ 

= c*(a)  (4.2) 

This is seen because for any v ~ R a with v2 = 

c*(v)>-(t~, v)-c(t~) 

= (,e, , ~ ) -  c . ( t~ )  = c * (o , )  

with the equality in the case v = v~. 
Suppose that C = R d2 is a convex Borel set so that ri(Ae.) n C O ~ Q and 

m.(0) = R:u(X1)~ C. Then C has a dominating point (for c*) and we denote 
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it by ac. Denote B = R d, x C and consider the dominating point of  B( = vB). 
We have 

c*(B) = inf c*(vl ,  a )  

IJ1E~dl~otcC 

= inf c*(v~) [by (4.1)] 
c ~ E C  

= inf c*(a) [by (4.2)] 
~ c C  

and thus uniquely 

where 

VB = V~ = m( t~) = m(O, fl) (4.3) 

and 

f 
(v.), =,:~g(X,) = J g(x) P~(dx) 

n 
Considering the observable f, we write F. =Y.i=~f(Xi) and similarly 

for g and u. Note that F. /n  =(G./n ,  U./n) and F. /n  = S . / n  in terms of 
Section 3. Now we are ready t o  state our basic result. 

Theorem 1. (Convergence of the empirical mean of  an observable with 
respect to the microcanonical  probabilities.) Suppose that (i) the domain 
9 .  is open, (ii) the function g is bounded,  and (iii) C is a convex Borel 
set with ri(Seu) c~ C o r Q and mu(0) = ~-u(Xl) ~ C. Let P0 be the canonical 
distribution (2.1) where/3 = mX~(ac). Then 

G . / n ~  I g(x) P~(dx) as n - ~ o o  

with respect to the microcanonical  probabilities P. .c  = P(" ]U./n ~ C). 

Proof The condition U./ n ~ C is equivalent to F./  n ~ B =R e' x C. By 
the conditional weak law of  large numbers F. /n  ~ x p  vB wrt the probabilities 

/3 = rn~l(ol) and a = ac (4.4) 

The connection of a and/3  may also be expressed as 

a=m.(/3)=F_~U(Xl)= f e(~'"(x)~-c.(~) u(x) P ( d x ) = I  u(x) P~(dx ) 

where PC is the canonical distribution (2.1) with /3 chosen according to 
(4.4). Finally note that vB is split as 

(v.)2 = E~u(X,) = 
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P(. IF,/n ~ B). But then it is seen that G, /n  ~exp (VB)I with respect to the 
probabilities P ( . [ U , / n  ~ C). �9 

Now we apply Theorem 1 to empirical distributions. Let ~-1, 7r2,. . .  be 
a sequence of  random probability measures and let P be a (fixed) probability 
measure on (E, ~). We say that the random probabilities ~r, converge to P 
exponentially with respect to the probabilities P, if, for all bounded, measur- 
able functions g : E ~ R the random variables j g dTr, converge to the limit 

g dP exponentially with respect to the probabilities P , .  This is denoted 
by ~'n ~exp P [w~ (P,)] .  

Recall that P, = n -~ ~=~ ex, denotes the empirical distribution of the 
sample X~, X 2 , . . . ,  X, .  Let g: E-~ R be bounded and measurable. Then 

gP, (dx )= g ( X i ) / n = G , / n  
i = l  

Applying Theorem 1 (and using its notations), we obtain the following result. 

Corollary 1. (Conditional convergence of the empirical distributions 
to a canonical distribution.) Under the assumptions (i) and (iii) of 
Theorem 1, 

A 
P.-----~ P~ [with f l=mXl(ac)]  as n ~ c o  

e x p  

with respect to the microcanonical probabilities P. ,c  = P(" [U./n ~ C). 

Let now P, P1, P2 , . - .  be a sequence of  (nonrandom) probability 
measures on (E, ~). We say that the probabilities P. b-converge to P if 

f g d P . - ~ I g d P  as n-*oo 

for all bounded,  measurable functions g : E ~ R. This is denoted by P. -~ b P. 
It follows from (4.1) that exponential convergence of the random 

probabilities 7r. to the probability P implies the b-convergence of the 
nonrandom probability measures 

IF, 7r,(dx) := I Ir.(r dx) P,(doJ) 

to the same limit P. This observation leads us to the following corollary. 

Corollary 2. (Convergence of the microcanonical distributions to a 
canonical distribution.) Under the assumptions (i) and (iii) of Theorem 1 
the microcanonical distributions P,,c = P( X1 ~ " I U . /n  ~ C) b-converge to 
the canonical distribution P~ [with/3 = mS~(ac)] as n - ~ .  
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5.  AN APPLICATION:  T H E  CANONICAL D I S T R I B U T I O N  OF 
THE IDEAL GAS 

As an application of  the above theory, consider a stationary physical 
system which consists of  a large number  of  identical particles having the 
states X , ,  X 2 , . . . , X , .  We assume especially that the observable u is 
nonnegative and scalar valued. We call u(Xi) the energy of particle i. About 
u we have an observation U,,/n e (al, a2), say, where ( a l ,  a2) is a (small) 
subinterval of  (geu)~ (0, ~ ) .  

The choice of  the unconditional distribution P of  X~ should be con- 
sistent with the assumed stationarity. In the case of  the ideal gas the state 
space E is a subset of  R 6 and P is (essentially) the Lebesgue measure (see 
below). Then P is o--finite, but it may be interpreted probabilistically via 
uniform conditional distributions on subsets of  finite measure. This situation 
is similar to the use of  the Lebesgue measure as an a priori measure in the 
Bayesian statistical analysis. Note that the earlier results do not demand P 
(or p) to be a probabili ty measure, namely all the conjugate measures P, 
(or pt) are always probabili ty measures. 

We suppose that @~ c (-00, 0]. This holds in the case where P has an 
infinite total mass, because then 

f e ~u(x) P(dx) = oo for all /3 --- 0 

It follows that the entropy function is decreasing, because its derivative is 

(c*)'(a)=m~l(a)<-O for all a e (5~.) ~ (5.1) 

Consider C = ( a ~ ,  a2). Suppose that C c  (SPu) ~ and mu(0)= 
S u(x) P(dx) ~ C. Then C has the dominating point a = a2 and we write 
henceforth C = (a  - 3, a ) .  

Using Corollary 1, it is seen that, given U./n e C, the empirical distribu- 
tion of the particles over states converges exponentially, as n-~ oo, to the 
canonical distribution 

P~(dx) = ( I / Z )  e ~ ( ~  P(dx) 

where/3 = m ~ l ( a )  and Z = Z(/3) = e %(~ is the normalizing constant, usually 
called the partition function. Similarly, by Corollary 2 the microcanonical  
distributions P..c b-converge to the same limit as n ~ oo. The limit P~ is 
called a Boltzmann distribution. 

The absolute temperature T~ corresponding to an energy level a ~ (5r ~ 
is defined by 

T~ = - 1 / / 3 ~  where /3~ = m~l(a) 
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The usual thermodynamic entropy function s is given by s ( a ) = - c * ( a ) .  
According to (5.1), 

- d s  = de* = fl~ da = ( - 1 / T ~ )  da 

and thus one obtains the well-known formula  (T~ = T) 

T ds = da 

The Ideal Gas  

The ideal gas is a physical system which consists of  homogeneous 
noninteracting particles called molecules and having only kinetic energy. 
We think of  the case that the number  of  molecules is fixed and large and 
the gas is bounded to a container A c R 3, with [AI <oo. The state of  a 
molecule is described by x = (q, p) ~ A x R 3 c ~6, where q and p are the 
position and the momentum,  respectively, of  the molecule concerned. As 
the common distribution of  the states of  the molecules X~, X 2 , . . .  in 
E = A x g~3 we choose, in accordance with Liouville's theorem, 

P ( d x ) = d q d p / l A  [ for x = ( q , p ) c E ,  

(Martin-LSf, 1979). 
The mean energy of  n molecules is U , / n  = n -l  Y~7=~ [pil2/2m, where m 

denotes the mass. We shall consider the case U , /  n ~ C = ( a - 6, a )  discussed 
above. By applying the earlier notation and by calculating, it is seen that 
the following holds. 

Consider  the energy observable u ( x )  = u(p ,  q) = [p12/2m. We obtain 

c~(fl) = log / e~U(~)P(dx) 
d 

and so 

= ( - 3 / 2 )  log(- /3/2~rm) 

mu(fl) = c'~(fl) = - 3 / 2 f l  

for /3 ~ ~u = (-oo,  0). Then for a c (504) 0 = (0, co) 

/3 = / 3 ~  = - 3 / 2 ~  

and 

c * ( . )  = ~/3~ - c ~ ( ~ )  

= ( - 3 / 2 )  log(4cremce/3) 

and thus the well-known formula for the thermodynamic  entropy is 

s ( , ~ )  = - c * ( , ~ )  

= (3/2) log(a~ 'ema/3)  
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Cons ide r /5  = the empirical distribution of the molecules, given U , / n  
(a  - 6, a ) .  Corollary 1 shows t h a t / 5  -->r P~ wrt the microcanonical  prob- 
abilities P ( . I U , / n e ( o ~ - 6 ,  a ) )  as n->co. Similarly, by Corollary 2 the 
microcanonical  distributions P(  X~ ~ �9 I U~/n ~ ( ~ - 8, a ) ) b-converge to the 
same limit P~. Here the limiting distribution is the canonical distribution 

Pr3(dq, d p ) = ( 1 / Z )  e-lpIV2m-r dqdp/]AI ,  ( q , p ) e E  

where Z = Z( /3)  is the partition function and T = -1 / /3  is the temperature,  
with/3 =/3,~ = - 3 / 2 a  corresponding to the observed energy level a. 

6. C O N V E R G E N C E  TO T H E  GRAND 
C A N O N I C A L  D I S T R I B U T I O N  

In this section we consider a stationary particle system in R 3. About 
the particles 1, 2 , . . .  we assume that each particle i has a site Qi (in R 3) 
and a state Xi  (in a given state space E).  We assume further that the sites 
(Qi) and the states (Xi) are independent and (Qi) forms a homogeneous 
Poisson process with the parameter  Vo (the assumption of  a spatial Poisson 
process is in accordance with the assumed stationarity, since a Poisson 
distribution is preserved under the Hamil tonian dynamics),  while 
X1, X 2 , . . .  are i.i.d, with the common distribution DX71 =P.  Consider a 
Borel set A c R 3 (a container). The number  of  particles in A is 

NA= Z 1 
/:QicA 

I f  the volume of A is finite, then N~ has a Poisson distribution with the 
parameter  volAI. For a while let A he such that ]AI-- 1 and write for short 
NA = N. Denote the states of  the particles in A simply by X1, X2, .  �9 �9 XN.  
We call the random element X = ( X 1 ,  X2 . . . . .  XN;  N )  the grand state of  
the unit container A. The e lement  X obtains values in the state space 
E = {0} w [._J~=l (E • x {n}) (X = 0 when N = O) and the distribution of X is 
given by 

P(dx)  = P(dxl ,  dx2, . . . , dx,;  n) 

= ( v~ /n  !)e -~o P(dx , )  P ( d x 2 ) . . .  P ( d x , )  

(In accordance with the earlier case, given N = n, the positions of  the n 
particles are i.i.d, and uniformly distributed in A and the states 
X1, X2, �9 �9 �9 X,  are i.i.d, with the distribution P.) Let u : E --> ~ be an energy 
observable [i.e., u(X~) is the energy of particle i; cf. Section 4]. In this 
section we think simultaneously of  the energy and the number  of  the particles 
in A and thus we define the grand energy observable u:E--> R 2 by 

u(x):U(Xl'X2''"'x"'~ n):( ~i=1 u(xi)' n) 
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Henceforth let A be a large container and let A , , A 2 , . . . , A ,  be a 
partition of A into unit containers. (In order to avoid unessential tech- 
nicalities, we assume that [A] is an integer = n.) Denote the state of A~ by 
X~. Then X1, X2, . . .  are i.i.d, with the common distribution P. Considering 
this "particle system", we may apply the results of the earlier sections to 
derive convergence results for hypothetical containers which can inter- 
change particles with their surroundings. 

Consider first the free energy function c.. By a direct calculation we 
obtain 

c,(fl, y) = log E exp[((fl, y), U(Xl))] 

= log  E exp[3  ~ ,  u(X,)+ y N ]  

=log Y, P ( N = n ) ~ : e x p  3 u ( X ~ ) + y n  
n ~ O  i = l  

=log ~ (v~ /n! )e -~~  ~ 
n ~ O  

= - V o +  VoCku(fl)e "y 

Suppose that u is such that @~ is open. Then @. = ~ .  x ~ is open, too. We 
obtain the derivative 

m.( f l ,  30 = ( VoCk '~(fl )e ~, Vo4Ou(fl ) er)  

For (3, Y) ~ 9 .  the conjugate distribution Pr of P is defined by 

P(~,v)(dx) = {exp[-cu (3, Y) + ((3, Y), u(x))]} P(dx) 

and it is called a grand  canonical  distribution. 
Let now (a, v) c ri(S~ and consider the equation m . ( 3 ,  7) = (a, v). Let 

us solve (3, Y). First 

VoCk ' ( f )e  ~ = a, V o ~ , ( 3 ) e  ~ = v 

and thus necessarily 

a~ v = 4o ' ,(3 ) /  4o~(3 ) = c'~(3 ) = m , ( 3  ) 

whence 

Then 

y = l o g ( v / V o ) -  cu(3)  

= log(v/Vo) - c. (m~l(a~/P)) 
This connection of (3, Y) and (a, v) is one to one. 
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Consider the grand entropy function. For (a, v) e ri(5r we obtain 

c*(~, ~) =<(~, ~), (~, v))-c . (3 ,  ~,) 

= a/3 + 7u + Vo- v 

It is also noteworthy that 

c.*(a, v) = voeVr yp+ v o 

where r  is the convex conjugate of the Laplace transform r  
Now we are ready to state the convergence results for the present case. 

Suppose that an observation is made about the grand mean 

UJ ]A[ :  = ~ u(Xi)/n ( n = l A  D 
i = 1  

i.e., the observation is about the mean energy and the particle density in 
the container A. Let the result be UA/IAI e C, where C c N2 is a convex 
Borel set, e.g., C = ( a l ,  a2) x (vl ,  v2). Suppose further that ri(9~ n C ~ 1 6 2  Q 
and Eu(Xl) = (Vo~=(u(XO, Vo) ~ C. 

Let g : E - > R  d be a measurable, bounded function and consider the 
grand mean of g, 

GA/IA[:= Y. g (Xi ) /n  
i=l 

= ~_, g(Xi)/lA[ 
i:QicA 

As a counterpart  of  Theorem 1, we obtain the following corollary: 

Corollary 3. (Conditional convergence of a grand mean.) Under the 
assumptions mentioned above, 

G~/IAI ~--~x, I g(x) P(~,~)(dx) as [AI-->co 

with respect to the probabilities PA,C := P(" IUa/IA] e C). Here P(~,~) is the 
grand canonical distribution, where (fl, 3')= m ~ ( a ,  v) and (a, v) is the 
dominating point of  C. 

A grand empirical distribution of A is defined by 

IAt 

f'Adx) = IAI-' E ex,(dx) 
i = 1  

By Corollary 1 we obtain the following result. 
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Corollary 4. (Convergence of  grand empirical distributions to a grand 
canonical distribution.) Under  the assumptions mentioned above, 

A 

PA ~ P(~,~) as IAI-" oo 

with respect to the probabilities PA,c. 

Finally from Corollary 2 we obtain the following. 

Corollary 5. (Convergence of  the microcanonical distributions to a 
grand canonical distribution.) Under the assumptions mentioned above, 
the microcanonical distributions PA,C := P(X1 C" I UA/IAI e C) b-converge to 
the grand canonical distribution P(a,~) as IAI-~ oo. 

Let us look at the grand canonical distribution P(t~,r) more accurately. 
It can be written as 

P(~n,)(dx) = {exp[-c . ( f l ,  y ) +  ((/3, y), u(x))]} P (dx)  

= (exp[ -c . i f l ,  3,) + ~ flu(x,) + yn]} e(dx l , . . . ,  dx,; n) 
i = 1  

= (v ' /n  ! ) [ exp( -v ) ]  Po(dx,) Po(dx2)... Po(dx,) 

where Po is the canonical distribution with /3 = m ~ l ( a /v ) .  Thus, in the 
limit, the number of  particles in a unit container is Poisson-distributed with 
the parameter u and, given this number, the states of  the particles of  the 
container are i.i.d, and they are distributed accoording to the canonical 
distribution P~ [13 = m~(o~/v)]. Here a and v may be interpreted as the 
observed mean energy and the observed particle density, of  the large 
container. 

The Ideal Gas  

As an application of  the theory of this section, consider the case of  an 
ideal gas. We choose the site and the state of  particle i as q, (the position 
in R 3) and p, (the momentum ~ R3), respectively. We assume that the sites 
q~, q2, - - ,  form a spatial Poisson process and, independently, the states 
Pt �9 P2 . . . .  are i.i.d, with the common distribution described by the Lebesgue 
measure (cf. Section 4). With this starting point the theory above applies 
for the ideal gas. 

Let us derive the limiting grand canonical distribution, which corre- 
sponds to the observation about the grand energy 

UA/IA[ C C := (~1, ~ )  • (vl ,  v~) 
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Consider the dominating point of C. Using the notation introduced above 
as well as the results of Section 4, we obtain 

Vcu (a, v) = (/3, 3') (a, v) c ri(Se.) 

and so 

and 

oc*/aa =/3 = rn~'(a/  v )=  - 3 v / 2 a  < 0  

Oc*/O v = 3' = log( v~ Vo) + (3/2) log(3 v/  4crma) 

The latter derivative is ~-0 for v ~ v ( a ) : =  v2/s(4r 3/5. Thus, the 
dominating point of ( a l ,  a2) x (vl, v2) is (a, v), where 

and 

0 ' = 0 / 2  

I 
Vl if Vl>V(a)  

v = .  v(a)  if /-"1 ~ /-1 ( a )  ~ /-"2 

Iv2 if v2<v(a )  

Choose this solution (a, v) and let/3 = - 3 v / 2 a .  
The distribution P~ is given by 

Pt3(dP) = ( 1 / Z ) e  IPl~/2'~r dp 

where 

and 

T = - l / f l  = 2 a / 3 v  

Z = (2"n'mT) 3/2 

Thus, the grand canonical distribution is given by the formula 

P(~,r)(dpl, �9 �9 �9 dp,,; n) = (v~/ n l ) [ exp ( - v )  ](1/ Z )  " 

xlexp(-~lpil2/2mT)]dpl'"dPni=l 

Finally consider an arbitrary container AI with volume V. The grand 
canonical distribution of the state X of A1 is clearly obtained by replacing 
above v by vV. One may also be interested in the limiting conditional 
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distribution of the pair (Q,X):= ( Q 1 , . . - ,  QN; X I , . . . ,  XN; N)  
UA/IAI e C. With an obvious  notat ion,  

P ( d q l , .  . .  , dqn; dXl ,  . . . ,  dxn; n[UA/IAI ~ c )  

= P ( d x ~ , . . . ,  dx~; nlUA/IAI ~ C ) ( d q ~ / V ) . . .  ( d q J  V )  

[ ( v V ) " / n  l ] [ e x p ( - v V ) ] ( 1 / Z ) "  

for  p~ e N 3 and  q~ ~ A1, i = 1 , . . . ,  n and  n = (0), 1 , . . . .  

635 

given 

REFERENCES 

Aizenman, M., Goldstein, S., and Lebowitz, J. L. (1978). Communications in Mathematical 
Physics, 62, 279-302. 

Csiszar, I. (1984). Annals of Probability, 12, 768-793. 
Dobrushin, R. L., and Tirozzi, B. (1977). Communications in Mathematical Physics, 54, 173-192. 
Ellis, R. S. (1985). Entropy, Large Deviations and Statistical Mechanics, Springer, New York. 
Lanford, O. E. (1973). Entropy and equilibrium states in classical statistical mechanics, in 

Statistical Mechanics and Mathematical Problems, Springer, Berlin, pp. 1-113. 
Martin-L~f, A. (1979). Statistical Mechanics and the Foundations of Thermodynamics, Springer, 

Berlin. 
Ney, P. (1983). Annals of Probability 11, 158-167. 
Nummelin, E. (1987). A conditional weak law of large numbers, in Proceedings of the Seminag 

on Stability Problems for Stochastic Models, Suhumi, USSR. Lecture Notes in Mathe- 
matics, 1142, 259-262. 

Rockafellar, R. T. (1970). Convex Analysis, Princeton University Press, Princeton, New Jersey. 


